California	Environmental	Protection	Agency
Ø Ai	r Resou	rces B	oard

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-14-012;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEARENGINE FAMILYDISPLACEMENT (liters)2016GKBXL.325KCB0.326			FUEL TYPE	USEFUL LIFE (hours) 3000	
			Diesel		
SPECIAL FEATURES & EMISSION CONTROL SYSTEMS			TYPICAL EQUIPMENT APPLICATION		
Indirect Diesel Injection			Generator Set and Other Industrial Equipment		

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for non-methane hydrocarbon (NMHC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED	EMISSION			EXHAUST (g/kw-hr)				OPACITY (%)		
POWER	STANDARD CATEGORY		NMHC	NOx	NMHC+NOx	со	РМ	ACCEL	LUG	PEAK
kW < 8	Tier 4 Final	STD	N/A	N/A	7.5	8.0	0.40	N/A	N/A	N/A
		CERT			5.3	3.1	0.32			

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this

day of November 2015.

Annette Hebert, Chief Emissions Compliance, Automotive Regulations and Science Division

Engine Model Summary Form

EO#U-R-025-0670 Date: 10/30/2015

KUBOTA Corporation Manufacturer: Engine category: Nonroad CI EPA Engine Family: GKBXL.325KCB N/A Mfr Family Name: **New Submission** Process Code:

Attachment page 1 of 1

1.Engine Code	2.Engine Model	3.BHP@RPM (SAE Gross)	4.Fuel Rate: mm/stroke @ peak HP (for diesel only)	5.Fuel Rate: (lbs/hr) @ peak HP (for diesels only)	6.Torque @ RPM (SEA Gross)	7.Fuel Rate: mm/stroke@peak torque	8.Fuel Rate: (lbs/hr)@peak torque	9.Emission Control Device Per SAE J1930
EA330-EF01	EA330-EF	6.7@2500	19.9	2.8	15.5@1900	21.0	2.2	EM, IFI
EA330-EF02	EA330-EF	7.0@3000	20.0	3.4	12.5@2000	20.0	2.2	EM, IFI
EA330-EF03	EA330-EF	6.2@2500	19.8	2.8	15.4@1900	20.9	2.2	EM, IFI
					.			
								and the second strength of the
		din Lander						
				andrea - There is a second to be				