

KUBOTA Corporation

EXECUTIVE ORDER U-R-025-0920 New Off-Road Compression-Ignition Engines

Pursuant to the authority vested in California Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)		
2021	MKBXL.898KAB	0.899	Diesel	3000		
SPECIAL FEATURES & EMISSION CONTROL SYSTEMS			TYPICAL EQUIPMENT APPLICATION			
Ir	ndirect Diesel Injection, Tu	urbocharger	Loader, Other Industrial Equipment			

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for non-methane hydrocarbon (NMHC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED	EMISSION		EXHAUST (g/kW-hr)					OPACITY (%)		
POWER CLASS	STANDARD CATEGORY		NMHC	NOx	NMHC+NOx	со	PM	ACCEL	LUG	PEAK
8 <u><</u> kW < 19	Tier 4 Final	STD	N/A	N/A	7.5	6.6	0.40	20	15	50
		CERT			6.6	1.1	0.14	5	2	15

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed on this 18th day of September 2020.

Allen Lyons, Chief

Emissions Certification and Compliance Division

Engine Model Summary Form

KUBOTA Corporation

Nonroad CI Engine category:

EPA Engine Family: MKBXL.898KAB

Mfr Family Name: N/A

Manufacturer:

New Submission Process Code:

EO# U-R-025-0920 Date: 9/9/2020

Attachn	าent F	age 1	1 of 1

1.Engine Code	2.Engine Model	3.BHP@RPM (SAE Gross)	4.Fuel Rate: mm/stroke @ peak HP (for diesel only)	5.Fuel Rate: (lbs/hr) @ peak HP (for diesels only)	6.Torque @ RPM (SEA Gross)	7.Fuel Rate: mm/stroke@peak torque	8.Fuel Rate: (lbs/hr)@peak torque	9.Emission Control Device Per SAE J1930
D902-NT-EF01	D902-NT-EF	24.4@2800	22.3	10.5	53.3@2000	25.2	8.5	EM, IFI, TC
D902-NT-EF02	D902-NT-EF	24.4@2800	22.1	10.4	52.4@2400	24.8	10.0	EM, IFI, TC
D902-NT-EF02e	D902-NT-EF	24.4@2800	22.1	10.4	52.4@2400	24.8	10.0	EM, IFI, TC
D902-NT-EF03	D902-NT-EF	24.4@3200	20.2	10.8	52.4@2400	24.6	9.9	EM, IFI, TC
D902-NT-EF03e	D902-NT-EF	24.4@3200	20.2	10.8	52.4@2400	24.6	9.9	EM, IFI, TC